Training algorithms for Radial Basis Function Networks to tackle learning processes with imbalanced data-sets

نویسندگان

  • M. Dolores Pérez-Godoy
  • Antonio J. Rivera
  • Cristóbal J. Carmona
  • María José del Jesús
چکیده

Nowadays, many real applications comprise data-sets where the distribution of the classes is significantly different. These data-sets are commonly known as imbalanced data-sets. Traditional classifiers are not able to deal with these kinds of data-sets because they tend to classify only majority classes, obtaining poor results for minority classes. The approaches that have been proposed to address this problem can be categorized into three types: resampling methods, algorithmic adaptations and cost sensitive techniques. Radial Basis Function Networks (RBFNs), artificial neural networks composed of local models or RBFs, have demonstrated their efficiency in different machine learning areas. Centers, widths and output weights for the RBFs must be determined when designing RBFNs. Taking into account the locally tuned response of RBFs, the objective of this paper is to study the influence of global and local paradigms on the weights training phase, within the RBFNs design methodology, for imbalanced data-sets. Least Mean Square and the Singular Value Decomposition have been chosen as representatives of local and global weights training paradigms respectively. These learning algorithms are inserted into classical RBFN design methods that are run on imbalanced data-sets and also on these data-sets preprocessed with re-balance techniques. After applying statistical tests to the results obtained, some guidelines about the RBFN design methodology for imbalanced data-sets are provided. © 2014 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the use of back propagation and radial basis function neural networks in surface roughness prediction

Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

Radial Basis Function Cascade Correlation Networks

A cascade correlation learning architecture has been devised for the first time for radial basis function processing units. The proposed algorithm was evaluated with two synthetic data sets and two chemical data sets by comparison with six other standard classifiers. The ability to detect a novel class and an imbalanced class were demonstrated with synthetic data. In the chemical data sets, the...

متن کامل

Growing Radial Basis Neural Networks: Merging Supervised And Unsupervised Learning With Network Grow - Neural Networks, IEEE Transactions on

This paper proposes a framework for constructing and training radial basis function (RBF) neural networks. The proposed growing radial basis function (GRBF) network begins with a small number of prototypes, which determine the locations of radial basis functions. In the process of training, the GRBF network grows by splitting one of the prototypes at each growing cycle. Two splitting criteria a...

متن کامل

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2014